
Today I'm giving an introduction to osquery in general and accessing it from python in
specific, since osquery is a versatile enough tool that you can interact with it in multiple
ways:

Python Plus osquery

Allister Banks

@allister on the MacAdmins Slack,

github.com/arubdesu

I'd be silly not to mention logging right off the bat as the primary recommended way to
use it at scale, so I'll touch on that briefly, but you can also run ad-hoc commands in
terminal or from scripts and do some reporting with things like JAMF's casper suite or
the Sal dashboard for munki. osqueryi is the interactive shell you can use when trying to
figure out what data you want to pull out or correlations you want to make.

And it may be a little convoluted, but I wanted to show how I created an adhoc auditing
tool via the python module that they maintain to generate a customized inventory for
Albert Einstein College of Medicine. My employer Montefiore Medical Group owns a
whole bunch of hospitals from the Bronx to southern Westchester in NY, and we run
data centers for other hospitals but are only now fully taking on support for the college,
which we've had a long affiliation with.

I'd like to fast-forward to the good stuff, or the cliff notes or spark notes version of the
talk, borrowing Ed Marczak's line from all of his presentations why do you want to use
osquery?

osquery
 - Logging

 - Ad-Hoc via osqueryi

 - via the Python module

How do I get this thing and make it run? Thanks to sam keeley, between this autopkg
run and the included osqueryctl command,

autopkg install osquery
sudo osqueryctl start

 you can immediately start a daemon that runs one query every hour for the
hostname, cpu and physical memory of the computer to a results log in /var/log/osquery,
which you can then expand on as you get the hang of it,

Because
system_profiler
is slooow

and collect logs from
/var/log/osquery

Or, if you don't want to think about managing or parsing logs in general, I did wire up an
adhoc method of running it that you can find in that github repo, I recommend auditing
the launchd_check python script in particular.

Facebook released osquery as open source in late 2014, and it really landed on my
radar around the MacBrained session in February 2015 presented by Mike Arpaia, (who
is now the manager of that team at Facebook but made commits as recently as
yesterday), and you can find that session archived on the MacBrained Live ustream
video page.

Or,
github.com/arubdesu/EAs

https://github.com/arubdesu/EAs
https://github.com/arubdesu/EAs/blob/master/launchd_check.py

The only time I had paid attention to osquery before then was when it hit the social
media with an indication that it would be something special for Macs. But the message
to the world at large was that you'd instrument or pull data from a Mac by actually
making database queries in sql, and in the hangover from cfprefsd wrecking our file-
based pref mgmt ways I kindof think everyone was like 'thanks, but no thanks'.

Teddy Reed joined Mike Arpaia to present on osquery at the PSU MacAdmins conf last
year, so I should be able to point to that as 'prior art', but it was a bit more focused on
them as having these specialized host intrusion detection needs. There is, of course, a
lot of value in centralized logging in general, and I'm going to 'go long' as it were on that
application of the tool at MacDevOps YVR in June, right before PSU, so hopefully you
don't mind if just I highlight some marquee features and concepts we'll need for the
purpose of my destination for this talk.

PSU MacAdmins 2015

For a brief exposition on why the folks at Facebook wrote it, and background as to some
other devops-y type tools that are in this space: I'd say one of the few popular
precursors to osquery is the company formerly known as Puppetlabs facter(I keep going
'Puppet the company' now that they changed their company name AGAIN recently)

facter, like puppet, was originally written in ruby and is purpose-built to inform
configuration management decisions. If you're familiar with puppet you may also know
there is so much you can express in puppet as a language now and Chef has an even
more native-ruby-ish way of writing configs that it's referred to as a DSL - or domain
specific language, which just means a purpose-built way to express things.

Deployments like Google's Mac fleet use facter extensively to do certain things for some
of their machines, based on the criteria that's returned, just in the same way a
smartGroup in the Casper suite would allow the application of policies.

At Facebook they don't use puppet, and while they probably have 50,000 less Macs
than Google has, they wanted osquery to be a lot more efficient and native than Ruby
can be, since Apple has been screwing with folks trying to access system frameworks
from Ruby for quite some time.

I also hear comparisons drawn to a tool from yelp called osxcollector, which is in python,
but it's more to generate forensics data to be use after a machine has had malware or
other types of funny business experienced, and you'd refer to it in the class of digital
forensics and incident response tools.
The

osquery developers have extensive python development experience, but there's a
history of security tools that they helped develop that didn't do everything they had
hoped for and didn't quite take off, so this time around their goals were clearly stated:

- They wanted easy enough for people from other parts of IT to collaborate on,
- They wanted fast and stable, so they could run this on actual production Linux server
instances, as they are doing so right now around the world
and also they needed to know it wouldn't either interfere with or be messed up by being
on developers laptops.

from the very first introduction video, lovingly stolen from Mike Arpaia’s slides, 2014

dfir
1 lovingly stolen from Mike Arpaia, 2014

https://www.youtube.com/watch?v=bcfg4VLyIHw
https://speakerdeck.com/marpaia/host-intrusion-detection-with-osquery

So as languages go, they refer to what osquery is written in as objectiveC++. They
wanted to assume that, if you're listening in the least disruptive and minimally resource-
intensive manner possible, you can listen for more things and the tale of the tape of
what you were interested in should give you an indication of why things happened
BEFORE you need an incident response-type situation.

And one last lecture-y point before I get into real-world usage that I recommend folks
start with - I spoke of a DSL in terms of puppet and chef, well they chose sqlite3 as the
DSL for getting the data in via the queries you're essentially running locally on each
machine, and I believe the motivation for that choice is it's pretty standard to use regex
or some other query-type format to get data out after you've done the log aggregation
and sql is just slightly less obscure and brain-breaking. The osquery devs contribute to
the sqlite3 spec and arrange the events it can listen to or information you'd be interested
in keeping tabs on in special tables or groupings of data.

osquery’s “killer demo”, in my opinion, is its
lightning-fast retrieval of loaded kernel

extensions, versus the 20+ seconds
system_profiler takes to return the same
info. osquery itself has a kernel extension,
which isn't something you should think of
as so fancy, you might more commonly
refer to software like this as drivers.

Google's santa project uses one, and another security-related kernel extension is by a
company and developer well-known in Apple infosec circles, Stefan Esser (that's his
github avatar below) of SektionEins in Germany, released a kext called SUIDGuard. If
you remember last years talk by Jesse Shipley, it was released as a mitigation against
an exploit for Yosemite.

Well it turns out one-off code that runs at the kernel level, especially when aimed at
something Apple wants to target with their own fixes is actually risky, and caused issues
on 10.11.4 upgrades because it wasn't even warrantee’d to run on anything other than
10.10 anyway. From a stability perspective, if any of your customers that have admin
installed it you'd probably want to know even before they upgraded to ElCap that it was
there. As I understand it, Apple has since stopped old versions from being loaded and
causing issues during boot, but this is one of those things that folks should really keep
an eye on.

Apple has required signed Kernel extensions as of ElCap because it's really trivial to get
around security frameworks like SIP if you're at that low kernel level. It's exactly what
Pedro Vilaça's rootfool software is meant to perform - SIP unlock without as much as a
reboot.

As I demo'd you try running system_profiler to get info on whether these kexts are
installed or loaded, go get a cup of coffee because it's going to take a while, and if you
want to collect that at scale you're slowing everything down, versus having a purpose-
build tool collect that info for you.

A further extension of what makes osquery awsm is the concept of an event stream
which is pretty basic, it just means that if your management tools only check state in a
preflight or postflight you wouldn't catch any updates that happened in the meantime.
It's a common computer science concept to have something publishing or pushing out
data, and have a 'subscriber', kindof like to your youtube channel about unpacking
scented candles or like an rss feed, so that you don't keep having to going back and
check if there's a new episode.

To show what classes of data osquery can subscribe to, or put another way, generate
logged events in a stream that buffer and then write to logs when the system isn't busy
doing other stuff, let's go to the osquery general-public-facing project page. Everything
you see here with a database-type icon across from the table name is that event stream
type, including if a file gets changed, or if malware has downloaded other software and
mounted it as a dmg. The rule of thumb is if the name ends in 'events' then it's that you'll
always get the breaking news updates, event stream type.

One last thing before I move on from the basics of osquery, and that is people might
think to themselves 'I'm not a DBA or database admin, nor in infosec, which end do I
blow in?' or 'how would I build up queries of things worth auditing'. Hopefully my casper
extension attribute repo on github gives you some ideas, but there's a larger osquery
community that has you covered from that perspective as well, via a concept called
'packs', or collections grouped by use case. If you're more concerned about potential
vulnerabilities rather than attacks, there's a pack for that. If you have a lot of admins and
need to check basic controls are in place there's an IT compliance pack, and with the
addition of Windows in a release dropping Any Day Soon Now™, you'll be glad to notice
that you can make your own packs and distribute them and have them apply optionally
as you see fit.

But, while we're on that point, we've come to that special part in many presentations,
which starts with 'If you take away nothing else from this talk...'

https://osquery.io/docs/tables/
https://osquery.io/docs/packs/

In this instance I'm going to cap that off with 'the top two things to know, about the
systems under your care are
1. what has persistence and
2. what browser extensions are installed.'

You get a good handle on that, or keep it in your field of vision, and you've covered the
lion's share of anything that would bite you. I'm going to get back to that first point of
stuff like daemons that stay loaded, but the majority of complaints customers have are
going to be browser-related, so I'll go over my evolution with auditing browser
extensions on my fleet.

If you've interacted with me in, for example, the #bash channel in MacAdmins Slack,
you'll notice I get very impatient with anything complex that people are trying to do with
bash, which usually means anything other than simple one-liners or the most basic
loops, because I prefer python.

And it came in handy a bunch of times, like when I first looked into grabbing all browser
extensions on a system to whitelist or flag with a precursor tool to osxcollector called
osxauditor.

It wasn't working for all browsers when I tested it, but between code I found in it and
poking around I was able to build a process that works on 10.9 and greater machines to
list some metadata about all of the browser extensions present on a system, whether or
not they're actually active, and put that in an EA with basic prettified output.

I then put in a feature request and a few weeks later a stable version of osquery was
shipping with an approximation of what I had done mostly manually with python. Since I
had already written my version, which includes the whitelist I decided upon for the ones
I felt were safe or appropriate enough for my environment, I'm still using the version you
see in my EAs repo on github for Casper in prod, but many of my more recent ones
include osquery output as the way I derive if there is info of interest on a machine. It
wasn't long before I'd built up a pretty good repertoire, and exposed the limits that not
using a log aggregator causes. And just to show you some of the why and how…

This is an incarnation I wrote for fun over the weekend - separate out the whilelist data,
start with a check for if either osquery and/or the python module is actually installed,
open a osqueryd process once and shove a query for each of the browsers on my
system, and then pour out the rest of the metadata osquery collects if it finds one that
isn't in the whitelist.

And finally for that auditing project, customers at the university downloaded an app
bundle that I hacked together between applescript for just a native app look that would
definitely have OS compatibility way back to 10.5 and a bundled version of cocoadialog
so I could get user input for one piece of information, their email address, via Google's
gmacpyutility interface to cocoadialog. We then called open from the command line with
a URL to send them to a web form where they'd tell us building, floor, room and
department because the network team was unwilling or unable to correlate that for us,
and while they were filling that form out I was opening a bundled version of osqueryd to
shove a bunch of queries through all at once to keep it very lightweight and fast, then
dumping them to a csv and curl'ing it to Box.com's anonymous file upload for further
parsing.

Now's about the time I should be wrapping up and saying thank yous and references,
but I said that there's two things to take away from this talk, and besides keeping
browsers clean it is to watch for persistence which means things like cron jobs, rc
scripts, and if you just browse those packs on the osquery.io site you'll notice the
majority of them, (that are about protecting Macs) all look at launchd jobs.

There's more...

http://url.aru-b.com/osqueryBrowse
http://url.aru-b.com/adhocOsq
https://github.com/google/macops/tree/master/gmacpyutil

When I was relying on the JAMF Casper suite for inventory and really only learning
about things like pylint to make my python a bit more readable to other people in the
community, I started using osquery to watch launchd, and after a bit of open monitoring,
collected a list of things that I could have a reasonable sense of confidence weren't
malware. I realize it's kindof the Godwin's law of macadminery to discuss Adobe, but...

Adobe released flash player 20.0.0.235 with an analytics service binary and a new
launchd job that auto-updates would apply and start running silently. 70+ CVE's security
bulletins were addressed by the patch part of that release, but I pulled it as soon as the
canaries in my munki release process sent in reports that knew unknown services were
running because of it. Autopkg loaded it in and I committed it, so it's not like I wasn't
aware of where it came from, but having osquery report on all launchd jobs including
user-level launchagents meant I saw it as soon as it was present on-disk. In the autopkg
community we had already prioritized checking downloaded packages or apps for the
developers signatures, but verifying that something malignant hasn't been slipped into
the build or release process relies on looking at behavior.

I hope that I've convinced you to start to find a way to check for those two groups of
data, browser extensions and launchd jobs, and shown off some ways that
incorporating osquery into my sysadmin tasks has really paid off. And now if folks don't
have any questions we can just tool around in the interactive session or go over docs,
or the contribution process of how they happen to run the project.

Go forth
and query

Thanks!

Python Plus osquery, by Allister Banks

Created for Philly MacAdmins, April 21, 2016

Introduction, TL;DR
What’s this about / what’s the quickest way we can get started with osquery?

- Common methods of interaction, workflows: via logging, ad-hoc via osqueryi, via the python module

- For the optimal experience, autopkg install osquery, sudo osqueryctl start, and collect logs in

 /var/log/osquery

Brief history, similar tools, ICYMI
‘Prior art’ presentations by the developers for reference, contrast with Puppet’s facter and osxcollector

- Mike Arpaia and Teddy Reed’s previous talks, teaser for my talk at macdevops::YVR

- facter is a purpose-built inventory tool to feed Reductive Labs Puppetlabs Puppet’s… puppet ಠ_ಠ, akin to Chef’s ohai

- osxcollector is associated more with DFIR, and inherits from osxauditor

- Finally, what osquery actually is: ’objective C++’ mixed with sqlite3

OMG TMI BBQ
After you’ve washed and moved all the large dishes out of the way, what’s left are the teaspoons

- Demo - why system_profiler sucks, in specific versus auditing kernel extensions

- Discussing software like santa, SUIDGuard, and rootfool, and event stream tables on osquery.io/docs

- More tooling around on osquery.io/docs/packs, for pre-canned queries

- Even more demo’ing of python-wrapped ways of grabbing browser extensions and an audit project

Demo Materials, Wrapup, Q&A, and Thanks!
Demo 1 - http://url.aru-b.com/osqueryBrowse

Demo 2 - http://url.aru-b.com/adhocOsq

And the conversation’s over once anyone mentions Adobe, a.k.a. the Godwin’s law of MacAdminery

https://osquery.io
https://osquery.readthedocs.org/en/stable/introduction/using-osqueryi/
https://github.com/osquery/osquery-python
http://autopkg.github.io/autopkg/
https://github.com/autopkg/keeleysam-recipes/blob/master/osquery/osquery.install.recipe
https://github.com/facebook/osquery/blob/master/tools/deployment/osqueryctl
https://docs.puppet.com/facter/latest/
https://github.com/Yelp/osxcollector
https://www.youtube.com/watch?v=bcfg4VLyIHw
https://youtu.be/arOO3UUedeA?list=PLRUboZUQxbyVydhdMcxGGfEaZc2sFdQk8
http://www.macdevops.ca
https://docs.chef.io/ohai.html
http://dfir.org/?q=node/8
https://github.com/jipegit/OSXAuditor
https://github.com/google/santa
https://www.suidguard.com/stories/index.html
https://reverse.put.as/2015/10/12/rootfool-a-small-tool-to-dynamically-disable-and-enable-sip-in-el-capitan/
http://osquery.io/docs
http://osquery.io/docs/packs
https://gist.github.com/arubdesu/a812cbc458efb0eb7f723b3b795a835f
https://gist.github.com/arubdesu/c4f60e653cbe851827bd6e6023a1b396
http://url.aru-b.com/osqueryBrowse
http://url.aru-b.com/adhocOsq
https://osxbytes.wordpress.com/2015/12/09/flash-player-20-0-0-235-adds-phone-home-analytics/#comment-205

